Newsletter

Dimer/Hexamer Transition Monitoring via in situ DLS

Insulin is an example of a dimeric to hexameric transition in the presence of zinc ions. Hexamer formation starts immediately after zinc addition and is completed within two to three days at room temperature.

The insulin model

Monomeric insulin, consisting of A and B chains covalently linked by an inter-peptide disufiide bridge. In solution, insulin has a tendency to form dimers.

Monitoring the Transition from a dimeric to a hexameric State of Insulin in Presence of Zn²⁺

Autocorrelation and Size Differences indicate the Transition to Hexamers

Monitoring of the transition from dimeric to hexameric insulin in presence of Zn2+ions

The dimer/hexamer Transition is a continuous Process, indicated by the Photon Count Rate in the DLS.

The dimer/hexamer transition is a comparably slow process. Therefore, changes in the photon count rate are visible when DLS measurements are taken at time intervals of several hours.

Mean hydrodynamic Radius from intermediate occuring Mixtures of Dimers and Hexamers

- A continuous transition from monomers to oligomers leads to intermediate mixtures
- · The measured size of the dimer and hexamer mixture lays in between
- The polydispersity index (PD) indicates the presence of such mixtures

